The fourth dimension
72 THE FOURTH DIMENSION
the whole contour corresponds to the ends of an axis of rotation in our space. He can impart the rotation at any point and take it off at any other point on the contour, just as rotation round a line can in three-space be imparted at one end of a rod and taken off at the other end.
A four-dimensional wheel can easily be described from the analogy of the representation which a plane being would form for himself of one of our wheels.
Suppose a wheel to move transverse to a plane, so that the whole disk, which I will consider to be solid and without spokes, came at the same time into contact with the plane. It would appear as a circular portion of plane matter completely enclosing another and smaller portionthe axle.
This appearance would last, supposing the motion of the wheel to continue until it had traversed the plane by the extent of its thickness, when there would remain in the plane only the small disk which is the section of the axle. There would be no means obvions in the plane at first by which the axle could be reached, except by going through the substance of the wheel. But the possibility of reaching it without destroying the substance of the wheel would be shown by the continued existence of the axle section after that of the wheel had disappeared.
In a similar way a four-dimensional wheel moving transverse to our space would appear first as a solid sphere, completely surrounding a smaller solid sphere. The outer sphere would represent the wheel, and would last until the wheel has traversed our space by a distance equal to its thickness. Then the small sphere alone would remain, representing the section of the axle. The large sphere could move round the small one quite freely. Any line in space could be taken as an axis, and round this line the outer sphere could rotate, while the inner sphere remained still. But in all these directions of