Acta Scientiarum Universitatis Pekiniensis (Naturalum)
ao de RE 1958 46
nm. me
= (2D (149) fo ure) y— Ayu Pdu+ 0
n 2
8 . aw 1 +olf ear 2(n=1) 4 y28 24 0
(2k-—2—m,—m,) (v+U 1 ) gly | 2(n=1) +(u"8 2 ae ) x |w— Aju” du}
set {2D (dev) 8 fie tr) pe Ai” Pda 0 1 2k— z 2k—3 +0(J,) +O(J2) +O(Jy 2k—-2 7 2k- #) + O(S, EG 2 7 2k— zE=2) (4) strp J =J (k-1, £-1) tp a 1 9 24-1 (m+) v— 1+ __(2k—2— m= ms) n-f U 2(n—1) | W—Asu-~” |?du, 4 ya 7 va 21—1-—(m,+m,)v —k+1++(m,+m) = = u ) a | W—Asu~ |2du, U r FA 5| HE 4, Tyg PT gon m)t AC tm) a}
: ot ra
A(t; m,) = ((5-1)[20- (m+m)v]—E (2a— (Gwe O).
(n—1) [2a— (m,-+m,) v] (2a.— (m+ M,)V<0) , Ay 24— (m,+m,)v>0, Al
mm stats : : Tet hp e4(B 1) 2a— (my m,)r]—€ eae ia (iat tr) 2 <h—h+na-2a—-€ #7 2a— (M,+M,)v<0 Fl
TKd — Keb (my me) +(r-1)[2a— (m,-++m)v)]
if -—k- oy (ims tm) ++ (m,-km.)rv-+2(n—1)a
#8 Ut, 4 m+ my, <2k—8 fry,
Te Nea 9 bake =3y+2(n— 1)a —2(n—1)(kvy—v)+2(n— La-f-»
KR I oo
att ees (n=2 o{ 1 (kv ~v—a)} (n>>2) . ”