Acta Scientiarum Universitatis Pekiniensis (Naturalum)
ets
Se
5 1 1 AR UG IE = 113
Bysx Hk, FFA aie A ’ 4 Oy —3.n—3 = Un—1-n—-1 IN’ ALR Bs IE (1) BY (3) > FA ALO
aE, TE
Ones in=s = 2 Ont nat
BEE TP, RAY BEA TIE (2) oe (4).
ALOR
Cet Can) Gaetan
fe 2<i<p<n—-1 WE MOL, RRA t=ptl aie.
Se p+ 1 Sie. 76(5), ei=k=n—p-l, j=n,
. = Wing tinep-a = — (DED) Gyan t27— (B4L) Gy p apt Gneptnp—t9 Wh dg int = (EV Oy tig ay $=2,---5Py (CA _ESK, ONE Qn—p—1-n—p—1 = POn—1-n—-1 «
SABLE SE», EAS FASE t= p+] Neer.
FEA p+ 1 oF RAT, FR ptl=n—-1, M2 (6) PATA
G11 = (M— 2) Ona.n—1 BY y= (N-3) Gy -4.n-a. RUS Bie TIE (2) , Maas ete HIE (4), Pima p+ l<n—1, 7£(5) P, i=k=an—p—2 j=1 45 Oey one pe Dae ae (am 2) Une ametaty > ae (Date) Onan pagel te One ape pels FRARDZATETE A, 604% | | (p+ 2) Onap Aya pe te Ona p= Dinan = 2) net ne FH (6) 4, Cepia pa — VOnatnet BG) Ope pt pepe = (Dial) Gye ge ges
BAe ABU EBAY, mA east AEs, 8145 On —p—2;n—p—2 om oe n—1:n—1
FE_ESUXLA (6), AAER
p=0 hk p=2, £5 P23 AJA ARABI Y , eae A IE (2) Bae ETE (4)
5| SBA. Fa 5) BB S Fit, Kalle A fy ad HBR EM ICAS nae t=1,2,----m—1
WAS By A, WATE AF SK SEB
FEEE ECB (n> 3) EFAS IC AED EA SSS PS
AERA. EME A. SFr iM, WA FOI PAK, PAL ARIE BAB FIC Be, TAR TE S| BB 1, ¢, RAHI, WZ a1. =0, ATM
Q,2=0, t=i,2,--:m—1,
SRE a » EEF EK, aA.