The fourth dimension

242 THE FOURTH DIMENSION

Take models 4, 5,6. Place 4, or suppose No. 4 of the tesseract views placed, with its orange face coincident with the orange face of 1, red line to red line, and yellow line to yellow line, with the blue line pointing to the left. Then remove cube 1 and we have the tesseract face which comes in when the white axis runs in the positive unknown, and the blue axis comes into our space.

Now place catalogue cube 5 in some position, it does not matter which, say to the left; and place it so that there is a correspondence of colour corresponding to the colour of the line that runs out of space. The line that runs out of space is white, hence, every part of this cube 5 should differ from the corresponding part of 4 by an alteration in the direction of white.

Thus we have white points in 5 corresponding to the null points in 4. We have a pink line corresponding to a red line, a light yellow line corresponding to a yellow line, an ochre face corresponding to an orange face. This cube section is completely named in Chapter XI. Finally cube 6 is a replica of 1.

These catalogue cubes will enable us to set up our models of the block of tesseracts.

First of all for the set of tesseracts, which beginning in our space reach out one inch in the unknown, we have the pattern of catalogue cube 4.

We see that we can build up a block of twenty-seven tesseract faces after the colour scheme of cube 4, by taking the left-hand wall of block 1, then the left-hand wall of block 2, and finally that of block 3. We take, that is, the three first walls of our previous arrangement to form the first cubic block of this new one.

This will represent the cubie faces by which the group of tesseracts in its new position touches our space. We have running up, nullf., redf., null f. In the next © vertical line, on the side remote from us, we have yellow f,